Developing a Blended Learning Approach to Foster Information Literacy in German Psychology Education

Anne-Kathrin Mayer, Nikolas Leichner, Johannes Peter, Armin Guenther, & Guenter Krampen

3rd World Conference on Learning, Teaching and Educational Leadership
October 24-28, 2012, Brussels, Belgium
Overview

• Conceptual background
• Outline of the project BLInk (“Blended Learning of Information Literacy”)
• Pilot study: Information literacy in German psychology students
• Conclusions
Conceptual background: Information literacy

Definition: “To be information literate, a person must be able to recognize when information is needed and have the ability to locate, evaluate, and use effectively the needed information.” (ACRL, 1989)

- Set of individual skills regarded as key competencies within the modern “information society” to
 - enhance higher education,
 - improve workplace effectiveness,
 - ensure the quality of scientific work
Information literacy: Differences between novices and experts

Inefficient strategies of information seeking among (future) scientists with little expertise ("novices") compared to "experts":

- limited knowledge of relevant information systems / databases (e.g., Chu & Law, 2008);
- use of narrower, simpler, and less complex repertoire of search strategies (Sihvonen & Vakkari, 2004);
- no appropriate use of thesauri (Sihvonen & Vakkari, 2004);
- less persistent with searches (e.g., Hoelscher & Strube, 2000)
Basic principles of the project BLInk
(Funded by the Leibniz-Association, Germany, 2012-2015)

(1) **Domain specificity:** program for students of psychology and related disciplines

(2) **Multimodality:** “blended learning” approach to combine advantages of E-learning and classroom interaction

(3) **Personal involvement:** participants will work on information problems relevant to their ongoing work

(4) **Adaptation to participants’ levels of competencies:**
 - information literacy
 - domain knowledge (Hoelscher & Strube, 2000)
Pilot study – aims and hypotheses

Aims:
(1) construction and psychometric testing of measures of
 • information literacy
 • domain knowledge (psychology)
(2) description of information search behavior of students (use of scientific databases vs. web search engines)

Hypotheses:
• increase of information literacy as well as psychological knowledge during studies \(\rightarrow\) differences between freshmen and groups of advanced students on all measures
Pilot study

Sample: $N = 64$ German psychology students
- Group 1: first-year students ($n = 22, M = 21.77$ years),
- Group 2: advanced students ($n = 21, M = 23.90$ years),
- Group 3: PhD students ($n = 21, M = 28.48$ years)

Measures:
(a) pilot versions of two paper & pencil tests
 - information literacy test
 - test of psychological knowledge
(b) information search tasks
Information Literacy Test

First version: \(k = 35 \) items (multiple-choice with three options) related to Standards 2 and 3 of the ACRL (2000), e.g.:

Which statement is true?

- The Journal Impact Factor (JIF) indicates...
- \(O \) ... how often articles published in this journal have been cited by other authors during a certain period of time
- \(O \) ... how many libraries have subscribed to the journal
- \(O \) ... the relevance ascribed to this journal by a group of experts

[related to Standard 3: Evaluating information]

Final version: 2 subscales \((k = 22) \):
- “Searching for information” \((k = 14, \text{ Cronbach's alpha } = .73) \)
- “Evaluating information” \((k = 8, \text{ Cronbach's alpha } = .73) \)
Test of Psychological Knowledge

First version: \(k = 25 \) items (multiple-choice, sentence completion, open-ended format) \(\rightarrow \) knowledge of “psychological core concepts” (e.g., Proctor & Williams, 2006), e.g.

> “Please name the three most important quality criteria of psychological tests according to Classical Test Theory.”

Final version: Cronbach’s alpha = .86 \((k = 21) \)
Information Search Tasks

Procedure: students do searches at a PC with access to the WWW, including the university library's website and psychological databases (PSYNDEXplus, PsycINFO etc.), and copy their results into an MS Word document

Tasks: $k = 3$ scientific information search tasks, framed as part of the preparation of a scientific presentation about assessment centers, e.g.

> “Find three meta-analyses on the predictive validity of assessment centers.”

Dependent variables:
- quality of search results \rightarrow scored by experts (0-15 points)
- type of information sources used (web search engines: Google, Google Scholar vs. scientific databases: PSYNDEX, PsycINFO) \rightarrow log files
Results 1: Group means and standard deviations of the tests

- Psychological Knowledge (Group 1 < 2 < 3)
- “Searching for information” (Group 1 < 2 < 3)
- “Evaluating information” (Group 1 = 2 < 3)

First-year students
Advanced students
PhD students
Results 2: Group means and standard deviations of the information search task score

\[\Delta \text{n.s., } t < 1 \]
Information search behavior

<table>
<thead>
<tr>
<th></th>
<th>No use of databases</th>
<th>Use of databases</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>First-year students</td>
<td>16</td>
<td>5</td>
<td>21</td>
</tr>
<tr>
<td>Advanced students</td>
<td>10</td>
<td>11</td>
<td>21</td>
</tr>
<tr>
<td>n</td>
<td>26</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

\(\chi^2 = 3.64, \ df 1, p = .06 \)

Information search task score

\(\Delta \) n.s., \(t < 1 \)
Summary and conclusions 1

(1) Construction and psychometric testing of measures of information literacy and domain knowledge

- Reliability: moderate to high internal consistency
- Validity: ability to differentiate between groups with different levels of expertise
Summary and conclusions 2

(2) Description of information search behavior of students
 • advanced students have not only gained knowledge about searching and evaluating information, but also use scientific databases more often than first year students
 • yet, they are not able to perform more effective searches
 • even use of scientific databases does not lead to more effective searches
 → inefficient use of databases (e.g., thesaurus, classification of methodology; see Sihvonen & Vakkari, 2004)?

 → need for instruction about the proper use of scientific databases among German psychology students
References

